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Abstract
The Franck–Condon (FC) approximation is used to obtain analytical values
for the second-order factors describing vibronic reduction for the case of the
strongly coupled icosahedral T1u ⊗ hg Jahn–Teller (JT) system in which an
electronic triplet ground state is coupled to vibrations of fivefold degeneracy.
This is believed to be applicable to the ground state of the C−

60 ion and so
the calculations should help in providing valuable physical information on
this fullerene ion. The procedures for determining vibronic reduction effects
depend critically on the particular JT system and upon the vibronic coupling
strength. In the FC approximation, the major contributions to these reduction
factors originate from virtual vertical transitions between the ground electronic
adiabatic state and excited vibronic states associated with upper sheets in the
adiabatic potential energy surface. At strong coupling, other transitions may be
neglected. The FC results are compared with those obtained from an alternative
approach involving a shift transformation. Details are given for perturbations
containing orbital operators of threefold (T1) and fivefold (H) symmetry. The
discussion emphasizes the inherent high symmetry of the system.

1. Introduction

The energy spectrum and electronic properties of degenerate electronic states are often much
influenced by the coupling to vibrations of their surroundings. This is seen particularly in
spectroscopic and bulk measurements of systems involving C60, in which coupling of the
electrons to the vibrating molecular cage takes place [1]. This vibronic coupling manifests
itself through the Jahn–Teller (JT) effect [2]. This can modify the size and character of
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any electronic perturbations that may be present. Examples of perturbations which can be
introduced in this way include spin–orbit coupling, random strains, and external stress. In order
to interpret data from spectroscopic experiments, for example, the energy levels responsible
for the observed lines must be determined. It is convenient therefore to introduce the concept
of the effective Hamiltonian [3–6]. This contains additional parameters that multiply the
orbital operators contained within the perturbation into which the vibronic coupling has been
transferred. These parameters are called vibronic reduction factors (RFs) [7–12]. They arise
from the involvement of the phonons which makes the effective mass of the electrons larger.
This in turn reduces the energy gaps in the energy spectrum of the electrons. If the perturbation
is sufficiently weak compared to the vibronic coupling that it can be considered in first order,
the corresponding factor is called a first-order RF. Similarly, second-order terms involving
the perturbation in second order (either the same perturbation twice or as a product of two
different perturbations) introduce the corresponding second-order RFs. Second-order RFs are
important as they can generate contributions significantly larger than and different from those
in first order [13, 14].

First-order RFs are relatively simple to calculate [7] but second-order RFs involve coupling
to an infinite set of excited vibronic states. They can only be calculated exactly in the pure
adiabatic case in which there is no mixing of the electronic states, such as that in the case of
the cubic T ⊗ e JT system in which an orbital triplet (T) interacts with the doubly degenerate
e-type vibrations [15]. In all other cases, approximations have to be introduced. Details of the
underlying theory and calculations from it can be found in [16–19], for example.

In most approaches to interpreting experimental data, RFs are treated as adjustable
parameters with values chosen to fit the data. However, these RFs contain a lot of important
physics. Indeed, the absence of a general theory of vibronic effects in fullerenes covering
the full range of coupling strengths slows down advance in this important area. We
recall that in earlier work on magnetic ion impurities in insulating and semiconducting
host crystals, it was only by combining theoretical work involving the influence of the JT
effect on various perturbations that many of the unknown impurities could subsequently be
unambiguously identified. It was shown that the effects of random strain combined with both
first- and second-order RFs were fundamental to this understanding and identification. These
development were spread over many years and involved much interplay between theoreticians
and experimentalists. Fullerene research is relatively young and thus we are attempting
to build up some fundamental principles which will assist in bridging the gap between
basic theory and experimental work. The latter include fluorescence emission spectroscopy,
Raman spectroscopy, electron paramagnetic resonance (EPR) and the observed magnetic and
superconducting properties of the fullerides. Specific recent examples include an analysis of
magnetic ordering in TDAE-C60 [20], the A3C60 fullerides [21], and the observation via EPR
of C60 molecules embedded in a crystal field [22]. A recent general review [23] discusses
how the vibronic and spin–vibronic angular momenta couplings combined with the JT effect
influence the dynamic properties of molecular systems.

The ground state of the C−
60 ion is an electronic T1u triplet, which couples to the icosahedral

fivefold-degenerate hg modes of vibration of the fullerene cage. It will therefore be subject
to a T1u ⊗ hg JT effect. A calculation of the first- and second-order RFs for the T1u ⊗ hg JT
system has recently been given using a shift transformation (ST) approach [24]. Results apply
to spin–orbit coupling and other perturbations. In this method, the states are assumed to be
a linear combination of shifted oscillator states. Whilst this is a good approximation for the
ground states, it may not be appropriate for the higher-lying excited states. As second-order
RFs involve coupling to an infinite manifold of excited states, this means that the RFs calculated
using this method may be inaccurate. As we move to excited states with higher energy, the
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energy denominators of the RFs increase. At the same time, the overlaps between the states
in different wells decrease. This indicates that the excited states should become increasingly
less important as their energy increases. Nevertheless, we need to determine whether all of
the excited shifted oscillator states in each well should be used in the summation. Numerical
approaches to second-order RF calculations fail to provide reasonable results because they are
even less applicable to highly excited states than the ST results.

The aim of the present paper is to use the Franck–Condon (FC) approximation [25,26] to
calculate the effects of vibronic reduction in the T1u ⊗ hg JT system. In this approximation,
it is assumed that virtual transitions between the ground and excited states, as occur within
the second-order perturbation formulae, take place so rapidly that the nuclei do not change
their positions during a transition. This will be true if the energy gaps in the nuclear system
are much larger than the energy gaps within the electronic system [27]. This is the case in
the region of strong coupling, and therefore the FC approximation will be valid in this limit.
In general, when the FC approximation is used to solve problems, the Born–Oppenheimer
approximation [2] is employed and applied to second-order perturbation terms involving
factored adiabatic wavefunctions. A recent text [28] has given some relevant general details
of the FC approximation, whilst a very recent paper [29] encompasses the FC approximation
in an analysis of the angle-resolved photoemission spectra predicted for LaMnO3. However,
the detailed procedures on how to use this approximation depend critically on the particular
application.

The next section (2) outlines the general theory of vibronic reduction with comments on
how it can be applied to the T1u ⊗ hg JT system. It introduces the effective Hamiltonian and
defines the basic quantities needed. Section 3 describes how the FC approximation may be
used to evaluate the second-order RFs. The results are given and compared with the previous
results obtained using the ST method in section 4. Further considerations involving the ST
results are given in section 5. A full discussion of the results follows in section 6.

2. The effective Hamiltonian

In order to proceed, we need some basic expressions from the general theory of vibronic
RFs; the detailed derivation of these expressions and thorough discussions of their physical
meanings can be found in [1, 2, 24], for example.

2.1. The basic vibronic Hamiltonian

The Hamiltonian H of a general vibronic system consists of the sum of the kinetic and elastic
energies together with potential energy associated with the coupling of the electronic motion
with the nuclear vibrations. The coupling comprises a linear term V1

∑
γ Q�γC�γ and any

contributions from quadratic coupling. The parameter V1 is the linear coupling constant,
C�γ is the electronic operator transforming as �γ , and Q�γ is the corresponding vibrational
coordinate of the nuclear frame (or molecule in the case of C60) having reduced mass µ and
frequency ω. In the T1u ⊗ hg JT system, the electronic label � ≡ T1u with components
σj = {x, y, z} and the oscillators � ≡ hg with the sum γ taken over the five components of
the hg vibrational mode. The orbital states are written in the form |�σj). The C�γ are thus
given in general by

C�γ =
∑

σiσj

|�σj)(�σi |〈�γ�σi |�σj 〉. (1)

The Clebsch–Gordan coefficients 〈�γ�σi |�σj 〉 are tabulated in [30]; explicit expressions for
them in terms of 3×3 matrices with respect to the orbital basis {x, y, z} for � = T1u are given
in [24].



3118 M Abou-Ghantous et al

With just linear coupling, the lowest adiabatic potential energy surface (APES) of the
T1u ⊗ hg system, to be referred to as the ground sheet, forms a trough of energy −EJT , where
EJT (=V 2

1 /5µω2) is the JT stabilization energy [24]. (The zero of energy is defined by taking
V1 = 0.) However, when quadratic coupling is introduced, this trough is warped such that
wells are formed [31–33]. The wells will be labelled by the index k. There are either ten wells
of symmetry D3d or six wells of symmetry D5d, depending upon the relative magnitudes of the
two quadratic coupling constants [34].

The ground states of the system are those in which the nuclear motion is localized about
the lowest-energy wells. We assume that any anharmonicity in the wells, which increases with
energy, can be neglected for the ground state. The nuclear functions in the wells in the ground
sheet then show oscillatory behaviour. As wells of a given symmetry are equivalent to each
other, tunnelling between equivalent wells can take place. The ground states are therefore a
linear combination of well states. Appropriate combinations can be found from symmetry
considerations [24,34,35]. The degeneracy of the well states is partially lifted and a T1 triplet
ground state is restored. The remaining states form tunnelling levels with energies just above
that of the ground state. In the ST method, the ground state in well k is denoted by |ψ ′

k; 0〉, and
the symmetry-adapted ground states that take account of tunnelling between wells are called
|0,T1σj 〉 where j = {x, y, z}. Consequently,

|0,T1σj 〉 =
∑

k

c
j

k |ψ ′
k; 0〉 (2)

where the ‘0’ indicates that the localized oscillators are in their ground states. The c
j

k are
coefficients subject to the normalization condition

∑

k

|cjk |2 = 1. (3)

The energy of the symmetry-adapted ground state will be called E0
0 .

We now need some notation to refer to all of the excited states. This includes states with
n � 1 phonon excitations associated with the ground sheet and states with n � 0 phonon
excitations on the two excited sheets. These will be referred to using the notation |i, n〉 where
i = 0 corresponds to the ground sheet and i = 1, 2 to the excited sheets. This notation ignores
any degeneracies but, as we show later, details of these states do not enter the calculations, so
this is not important. The energy of the state |i, n〉 will be denoted by En

i [2].
In the adiabatic approximation, the states |i, n〉 can be written in the form

|i, n〉 = |�i(r,Q))|�i
n(Q)} (4)

where |�i(r,Q)) is the electronic wavefunction written as a function of the position r and
vibrational parameter Q, and |�i

n(Q)} is the nuclear wavefunction.

2.2. Vibronic reduction factors

Before giving detailed expressions for second-order vibronic RFs, we will illustrate the need
for such factors in physical terms. In a system in which the electrons are strongly coupled to
their surroundings, the electrons behave as if they are coated with phonons. They are thus much
heavier, so transitions from one ground state to another ground state caused by a perturbation
become weaker as the coupling gets stronger. This first-order reduction is often sufficiently
strong that it may virtually cancel any transition in first order. Virtual transitions via the excited
states then become more probable and thus there is a need to calculate the magnitude of these
reductions in both first and second order, and to compare the two.
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If the Hamiltonian of an (electronic) perturbation having symmetry �a within the ground
state is written as

H(1)(�a) =
∑

γ

W�γC�γ (5)

where W�γ are coefficients, then second-order perturbation theory generates a Hamiltonian of
the form [16]

H(2)(�a ⊗ �b) = H(1)(�a)G(T1)H(1)(�b) (6)

where G(T1) is the Green operator

G(T1) =
∑

i,n

|i, n〉〈i, n|
E0

0 − En
i

(7)

involving the excited states |i, n〉 (which exclude i = n = 0).
The next stage is to express the effect of the perturbation given in equation (5) by

appropriate first- and second-order effective Hamiltonians. The detailed derivation of these
expressions and a thorough discussion of their physical meaning can be found in [24], for
example. To summarize the procedures, we may represent the effect of perturbations using
effective Hamiltonians of the form

H(1)
eff = K

(1)
M (�a)

∑

γ

W�γC�γ

H(2)
eff (�a ⊗ �b) =

∑

γaγb

∑

Mm

W +
�γa

W�γb〈�γa�γb|Mm〉K(2)
M (�a ⊗ �b)L

(2)
Mm(�a ⊗ �b) (8)

where M is contained in the product �a ⊗ �b,

K
(2)
M (�a ⊗ �b) = 〈0,T1σi |L(2)

Mm(�a ⊗ �b)|0,T1σj 〉
(T1σi |L(2)

Mm(�a ⊗ �b)|T1σj )
(9)

and

L(2)
Mm(�a ⊗ �b) =

∑

γiγj

C�γiG(T1)C�γi 〈�γi�γj |Mm〉. (10)

L
(2)
Mm is obtained directly from L(2)

Mm by replacing G(T1) with unity. The components σi and σj

are chosen appropriately, so that the numerator and denominator in equation (9) are non-zero.
The effective Hamiltonians in equations (8) contain only electronic operators, whereas the

real Hamiltonians given in equations (5) and (6) also include vibrational terms. The vibrational
nature of the ground states has been ‘transferred’ to the set of so-called first-order RFs K(1)

M (�a)

and second-order RFs K
(2)
M (�a ⊗ �b).

3. Evaluation of the vibronic reduction factors within the FC approximation

We will now introduce the FC approximation. We start by replacing the vibronic well state
|ψ ′

k; 0〉 in equation (2) by a product of electronic and nuclear wavefunctions |ψk(r,Q))|φk(Q)},
just as was done for the excited states in equation (4). |ψk(r,Q)) is the orbital ground state
in well k and |φk(Q)} is the associated five-dimensional oscillator function centred about
Q = Qk

0. The latter is given by

|φk(Q)} = (π/τ)5/2 exp[−τ(Q − Qk
0)

2] (11)

where τ = mω/(2h̄) and where ω is the frequency of the corresponding normal mode
including the effects of anisotropy in the wells. This is the so-called crude adiabatic [36]
or Born–Oppenheimer [2] approximation. This terminology is used as the adiabatic electronic
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Q

Energy

E0
0

E1
0

E1
p

E1
q

EJT

∆Evert
1

=3EJT

Figure 1. A one-dimensional FC diagram showing the cross-section in the plane joining two D5d
wells in the lowest sheet of the T1u ⊗ hg problem. The thick solid curves show the lowest sheet
containing the two wells and one of the two excited sheets (labelled ‘1’). The ground states in the
wells on the lowest sheet are shown together with the ground state and two of the infinite number
of possible excited states, labelled p and q, on the upper sheet. The vertical FC transitions from
one of the ground states are indicated by dashed arrows. Only states near q have significant overlap
with the ground state. The energies indicated are defined in the text.

wavefunctions |ψk(r,Q)) depend smoothly on Q. In contrast, the ground-state oscillator
functions |φk(Q)} are relatively very sharp. This enables us to replace |ψk(r,Q)) with
|ψk(r,Q

k
0)). The physical reason for this is that the nuclear masses are so large that the

delta-function-like wavefunction for the nuclei effectively constrains the nuclear motion to
the bottom of the wells to give static-type behaviour. The larger the vibronic coupling, the
more accurate the Born–Oppenheimer approximation becomes. The mathematical criterion
for this approximation to apply is that h̄ω  EJT . The right-hand side of this inequality is
proportional to V 2

1 . This approximation provides a basis for calculating values for the RFs in
the strong-coupling case when a large number of excited states need to be considered.

The basic idea of the FC approximation can be understood in terms of WKB wavefunctions.
The excited vibronic states with high excitation energy oscillate as exp(iPQ), where P =√

2m(E − U) is the linear momentum of the ‘particle’, E is its total energy, and U(Q) is
the corresponding potential energy. Due to these oscillations, the dominant contribution to
the overlap integral with a smooth function originates from turning points, where P = 0.
As mentioned above, the other factor in the integrand is the δ-function-like ground-state
wavefunction. Evidently, the product is zero unless the two (almost) singular points, the turning
point in the excited state and the equilibrium position of the ground state, coincide. Therefore,
all transitions to excited vibronic states can be ignored except for the vertical transitions to
the upper sheets; all other transitions have negligibly small overlap integrals. This situation is
illustrated schematically in figure 1, which plots the ground sheet and one of the excited sheets
in the plane containing two of the D5d minima. The vertical transitions are indicated by dashed
arrows. It should be noted that the WKB approximation is not a necessary component of the
FC approximation, and its criteria do not actually apply to the FC approximation. It has been
used above just to illustrate the main ideas behind the FC approach. Due to the arguments
given above, the energy denominator in equation (7), which in general is different for each
excited state |i, n〉, can then be replaced by the vertical energy gap 0Ei

vert separating the sheets
at Q = Qk

0. This is a constant for each sheet i. For the T1u ⊗hg problem, the gaps equal 3EJT .
This leaves the contribution to the numerator of the Green operator due to sheet i of

∑

n

|�i
n(Q)}{�i

n(Q
′)| = δ(Q − Q′). (12)
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The sum over the excited vibronic states has therefore been convoluted into the delta function
δ(Q − Q′). Therefore, G(T1) in equation (10) can be replaced by the FC Green operator
GFC ≡ GFC(r, r

′,Q,Qk
0) given by

GFC = −
∑

i

|�i(r,Q))(�i(r
′,Q′)|

0Ei
vert

δi(Q − Q′) (13)

where the ‘i’ on the δ-function indicates the sheet to which it applies. The sum is over the
adiabatic electronic states on the two excited sheets i = 1, 2 rather than being a sum over an
infinite number of vibronic excited states.

We note that the ground state involved in the determination of the RFs encompasses the
ground states for each well as given by equation (2). However, the major contributions to the
second-order RFs come from terms that are diagonal with respect to that well. In other words,
a vertical transition that starts from a certain well will end up within the same well. The off-
diagonal contributions are exponentially small as they are proportional to the corresponding
overlap integral, which, at strong coupling, can be neglected. This result gives the physical
background to the FC approximation; as the nuclei are much heavier than electrons, the virtual
electron transition takes place in a time much shorter than the characteristic time of the nuclear
motion. Therefore, to a good approximation, the latter do not move at all and hence transitions
up to excited states and back down to the ground state are vertical.

As inter-well transitions can be neglected, the calculation of RFs reduces to the
consideration of each well separately. We can write down a FC Green operator G(k)

FC for each
well k, using these operators appropriately when calculating the matrix elements between a
ground state in a well and an excited state needed to evaluate equation (9). As the electronic
states in any well form a complete set, the closure relation can be used to obtain the result

G
(k)
FC = −[1k − |ψk(r,Q

k
0))(ψk(r

′,Qk
0)|]/0Ei

vert (14)

where 1k stands for unity associated with well k. This expression now depends only on the
adiabatic electronic state in well k.

4. The results

As 0Ei
vert is directly proportional to V 2

1 , the product V 2
1 K

(2)
M (�a ⊗ �b) is independent of V1

and is a more appropriate quantity to use than K
(2)
M (�a ⊗ �b) by itself. Ham [7,15] discussed

a similar asymptotic behaviour of second-order RFs for the exact cubic T ⊗ e system that
was considered originally; this same result was also obtained from the modelling of other
linear systems having cubic symmetry (e.g. [16]). If the second-order coupling terms are
included in the original Hamiltonian, 0Ei

vert depends upon V 2
1 in a more complex way, and

V 2
1 K

(2)
M (�a ⊗ �b) is no longer independent of V 2

1 . However, V 2
1 K

(2)
M (�a ⊗ �b) still provides

a useful way of quantifying the vibronic reduction effects. We restrict our discussion here to
the linear coupling terms only.

Values for V 2
1 K

(2)
M (�a ⊗�b) have been evaluated firstly for the cases in which �a ≡ �b ≡

T1 (e.g. representing spin–orbit coupling, for example), and secondly for �a ≡ �b ≡ H.

4.1. The case of �a ≡ �b ≡ T1

As the direct product T1 ⊗ T1 = A ⊕ T1 ⊕ H, the symmetry component M can take the labels
A, T1 and H in this case. The calculation in this case is straightforward, as the T1 orbital
operator has zero diagonal matrix elements within the electronic ground state |ψk) of all D3d
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0 2 4 6 8 10
K

-4

-3

-2

-1
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K
M(2

)

H A

T1

Figure 2. A plot of the calculated second-order RFs (in the form K2K
(2)
M ) as a function of K for

perturbations of T1 symmetry. The solid lines give results from the FC approximation; the dashed
and dot–dashed curves are the results obtained from the ST method using D3d wells and D5d wells
respectively. The labels give the values of M.

and D5d wells, so the second term in equation (14) is zero. On substituting the first term of the
same equation into equations (8), we find that in general (i.e. for an operator of symmetry M),

K
(2)
M (T1 ⊗ T1) = −K

(1)
M (T1)/0Ei

vert . (15)

A similar relation between first- and second-order RFs was found previously (see [17],
equation (4.7)) in the case of cubic systems. As K

(1)
M (T1) = 0, the only non-zero second-

order RFs are those for which M = A and H.
To facilitate direct comparison with other published data, we introduce the dimensionless

linear vibronic coupling parameter K (defined as k1 in [24]) given by

K = −V1/(2h̄µω3)1/2 = [5EJT /(2h̄ω)]1/2 (16)

and calculate instead K2K
(2)
M (T1 ⊗ T1) as a function of K . As expected from the analysis

above, the results from the FC approximation are horizontal straight lines in the figures. Also,
results obtained from the D5d wells are exactly the same as those obtained from D3d wells.
Figure 2 gives the results obtained for the case in which the ground-state minima are assumed
to be of D3d symmetry. It also shows the results obtained from a re-evaluation of the ST
method [24,35], taking excited states with n phonon excitations to be at an energy nh̄ω above
the ground-state energy in the strong-coupling limit and neglecting quadratic coupling as far
as the energy differences are concerned in order to simplify the calculations. For moderate
to large values of K , the ST results show that the K2K

(2)
M (�a ⊗ �b) versus K curves become

horizontal straight lines. The asymptotic values can be determined either from the graphs or
by taking the strong-coupling limit of the formula for the RFs given in [24] and [35]. However,
these asymptotic values are clearly different for D5d wells and D3d wells, and in both cases
the results are different to the FC values. The detailed numerical results from the FC and ST
methods in the infinite-coupling limit are collected together in table 1. This table also displays
separately the contributions to the RF from the first term in equation (14), denoted by FC1, and
from the second term in (14), denoted by FC2. We discuss the reasons for these differences in
section 5.

4.2. The case of �a ≡ �b ≡ H

On many accounts, this is a much more complicated case than that considered above. The
main complication is that the binary multiplication H ⊗ H contains the result 2H, with both
components being symmetric. Therefore cases where M = A, T1, and two H-type components
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Table 1. The values of K2K
(2)
M (�a ⊗ �a) for perturbations �a = T1g and Hg, calculated using

the FC approach. The contributions from the first and second terms in equation (14) are listed
separately as FC1 and FC2 respectively, together with their sum FCtot . The values obtained using
the ST method in the strong-coupling limit are also given.

Well M �a ST FC1 FC2 FCtot

D5d Ag T1g −25/12 −5/6 0 −5/6
Hg T1g −5/6 −1/3 0 −1/3
Ag Hg −5/3 −1/2 0 −1/2
H1g Hg −5/6 −1/3 0 −1/3
H2g Hg −1/6 −1/3 +8/15 +1/5

D3d Ag T1g −5/4 −5/6 0 −5/6
Hg T1g −1/2 −1/3 0 −1/3
Ag Hg −2 −1/2 0 −1/2
H1g Hg −7/6 −1/3 +8/27 −1/27
H2g Hg −1/2 −1/3 0 −1/3

(labelled H1 and H2) must all be considered. Also, an orbital operator of H symmetry has non-
zero matrix elements within the electronic ground states |ψk(r,Q)). Thus contributions from
the second term in the expression for G

(k)
FC in equation (14) must be evaluated as well as the

contributions from the first term. The detailed results are given in table 1 and figure 3; the table
and figure also include the results obtained using the ST method as in the previous section,
with a consistent use of the labels H1 and H2. The distinguishing labels on H merely reflect the
two columns in the tables of [30]. H1 and H2 cannot be distinguished on symmetry grounds
alone. The problem of repeating irreps has been studied previously in the case of first-order
RFs [32, 37, 38] but, to our knowledge, not for second-order RFs. For operators in second-
order perturbation theory, the problem should be considered by introducing a phase parameter
to describe the mixing of the repeating irreps. However, in general, there are an infinite set
of such states. The phase must then be chosen to diagonalize the 2 × 2 matrix formed by
calculating the off-diagonal elements of the second-order perturbation involving both H1 and
H2 in order to get two real H-type second-order RFs. This very interesting problem has not yet
been solved and it will form the subject of future work. The best we can do at the moment is to
give the values for H1 and H2 separately. In this connection, it is interesting to observe that the
difference between H1 and H2 arises from the FC2 contributions in table 1. The contribution
from FC1 involves just the first-order RF K

(1)
M (H) divided by the vertical energy gap which is

the same for all wells and for all H-type components.
We note that the FC2 contribution involves the sum

∑
k c

2
k(ψk|L(2)

Mm|ψk)
2. This sum

is the same as that obtained when the intensity of a resonance Raman line for an electric
dipole transition is calculated. Moreover, it has the same selection rules as the corresponding
quadrupole operator. An additional theoretical point is that H1 can be associated with an
orbital operator L = 2 and H2 from L = 3, or vice versa. In the Ih group there are two kinds
of quadrupole moment rather than just one as in the group of general rotations. For H1, the
quadrupole momentum is linked to different axes of symmetry from those linked to H2. In the
trigonal case, the wells are in counter-phase with the quadrupole momentum associated with
H1 but they are in phase with one of the H2 type. For pentagonal wells, the phase situation is
exactly opposite. Therefore, in the trigonal wells all contributions from (ψk|L(2)

Mm|ψk) cancel
for one case and are non-zero for the other case. The situation is exactly opposite for pentagonal
wells.
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Figure 3. As figure 2, but for perturbations of H symmetry. The solid curves are the results from
the FC approximation, given from top to bottom as follows: M = H2, D5d wells, M = H1, D3d
wells, M = H1, D5d wells and M = H2, D3d wells (both degenerate), and M = A, both types of
well.

5. FC method in ST basis

It is clear from the figures and tables that the FC results, which are exact in the infinite-coupling
limit, are always smaller in magnitude than the values obtained from the ST method. This is
because the two methods have different physical bases, as will be explained below. We will
also gain further understanding of the reasons contributing to these differences by applying
the FC principle to the excited states obtained from the point of view of the ST method.

We will consider first the case of D5d wells. In the ST method, there are six minima at
positions Q = Qk

0 (k = 1–6) in the ground sheet. The minima are assumed to be paraboloids
(or distorted paraboloids if anisotropic effects are included) centred on Q = Qk

0. The upper
sheets are excluded from the calculations, but the arms of the ground parabolic wells are
assumed to extend up to infinity. Hence part of all wells l �= k overlap with each well k.
In fact, the potential function for each of the five other wells l �= k intersect at a point X at
Q = Qk

0 which coincides with the centre of the well k. The energy at the intersection point
is 12EJT /5 relative to the bottom of the well. The situation for two D5d wells is represented
in figure 4. The figure shows energy as a function of Q in the plane joining two of the D5d

minima. The thick dashed curves show the parabolic potential functions to which the two
wells are approximated. For clarity, the potential functions for the other four wells are not
shown, although they all intersect at the point X. The thick solid lines show the three APESs
in this plane.

We can undertake a FC-type calculation in which vertical transitions from one D5d well
to the five other D5d wells are considered. Instead of two sheets at an energy of 3EJT as in the
‘standard’ FC approximation, there are now five sheets at energy 12EJT /5. We have performed
this calculation for the K

(2)
Hg (T1g ⊗ T1g) RF. It is found that the value for K2K

(2)
Hg (T1g ⊗ T1g)

is exactly the same as the limit of the value obtained from the ST calculation as the coupling
tends to infinity. In other words, the FC calculation and the strong-coupling limit of the ST
results do give the same answers when the calculation is carried out on the same grounds.
This gives us confidence that the FC method in general is a valid approach to use for strong
coupling, and that no errors have been made in the calculation.

The values of the RFs obtained using the FC approach described in the last section should
be considered to be the most accurate. The result obtained here is obtained on the assumption
of a pure parabola in the ground sheet. This assumption is valid near the bottom of the wells,
and so is good for the low-lying states. However, figure 4 shows that this is not a good
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Figure 4. A one-dimensional FC diagram in the plane joining two D5d wells in the lowest sheet
of the APES. The thick solid curves show the lowest sheet containing the two wells and the two
upper sheets. These upper sheets intersect each other at the minimum values of Q = Qk

0. The
vertical energy gap at Q = Qk

0 is 3EJT . The thick dashed curves show the parabola to which the
two wells are approximated in the ST method. The vertical energy gap between the bottom of one
well and the upper part of the other well is 12EJT /5. The parabolas for all of the five D5d wells
except the left-hand well intersect at the point X.

approximation for the highly excited states that contribute to the RFs in the strong-coupling
limit. As 12EJT /5 is close to 3EJT , the main difference between the two FC approaches is
that the sum is taken over five sheets for the FC method using the ST basis rather than only
two as in the ‘standard’ FC method. The result is that the ST method of calculation overcounts
the contributions to the second-order RFs, as seen in table 1.

The discussion above has focused on D5d wells as these are the easiest to picture. However,
a similar situation arises in the case of D3d wells, except that some of the wells to be considered
are nearest neighbours and some are next-nearest neighbours. Consequently, there are now
three excited sheets at a relative energy of 4EJT /3 and six sheets at 8EJT /3. When these
numbers are compared to two sheets at 3EJT as taken in the ‘standard’ FC calculation, it
can be seen that the ST method will again overestimate the second-order RFs, as seen in
table 1.

6. Discussion

We have seen that for the T1u ⊗hg problem, the ST method has overestimated the second-order
RFs in the strong-coupling limit. However, we note that for the cubic T ⊗ e JT system, the
values for the second-order RFs obtained by the FC and ST methods coincide with each other
and with the results of exact analytical calculations [7]. In retrospect, this can be seen to
be somewhat fortuitous. For this problem, there are two excited sheets separated by energy
3EJT at the minimum points in both the ST and FC methods. This is a particular feature of
the T ⊗ e system. The ST and FC methods are expected to give different answers in other
JT systems.

As mentioned above, we have been unable to give a unique definition of the two H-type
second-order RFs for the case of the H ⊗ H second-order perturbation. It is possible that this
explains why the FC results for D3d wells are different to those obtained for D5d wells for the
case of H ⊗ H perturbations. This is in contrast to the results from T1 ⊗ T1 perturbations
where the same results are obtained for the two types of well. We would anticipate that the
overall structure should depend upon the final symmetry labels only as in the case of T1 ⊗ T1

rather than on details of the symmetry embedded in the underlying calculations. We also
note that figure 3 depicts an example in which there are even opposite signs of the H1 and H2

components. This is a fascinating problem which is yet to be solved.
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In the numerical work of O’Brien [14], a significant coupling between different sheets in
the APES was found. Also, her numerical result included significant contributions to RFs from
those regions in which two or more excited sheets intersect. Neither these nor the effects of
anisotropy have been included in the ST method, as such corrections detract from the idea of
a relatively simple analytical calculation. This problem is bypassed in the FC approximation
because detailed knowledge of the excited states is not required, and hence these concepts are
not relevant.

Finally, the question arises as to which sets of results should be used in any analysis of
experimental data. In the intermediate-coupling regime, only results from the ST method
are available. There are no alternatives at the present time. The ST method clearly gives
results which fit well with the weak-coupling limit of second-order RFs obtained by standard
perturbation theory [7]. At the same time, the FC calculations described above show a
limitation of the ST results at strong coupling. In this regime, the ST results should be
replaced by the FC results. Ultimately, we await reliable experimental data to which our
models can be applied.
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